jueves, 3 de diciembre de 2015

¿Cuánto nos queda de vida?

Si bien generalmente escuchamos de estas noticias en relación a la escasez de agua, el derretimiento de los polos o al calentamiento global, expertos de la Universidad de East Anglia en Inglaterra han calculado esta fecha límite con respecto a otro margen: el momento en que nuestro planeta abandone la zona habitable del Sistema Solar.
Según el estudio, publicado en la revista Astrobiology, la vida en la Tierra depende de nuestra permanencia en este sector de nuestro universo cercano, ni tan aproximado ni tan lejano al sol, que permite la existencia de agua líquida. Este elemento, fundamental para la vida, podría desaparecer una vez que nuestro sol siga envejeciendo. Cuando esto suceda el astro se volverá cada vez más grande y más brillante aumentando la temperatura en la Tierra hasta que deje de soportar la existencia de agua.
De acuerdo a las nuevas estimaciones de los científicos, y basados en dos ecuaciones, para que este escenario se presente en nuestro planeta solamente quedarían alrededor de 1,750 a 3,250 millones de años de vida por delante. Así, una vez que nuestro planeta pase a la zona más calurosa, el agua y la vida como la conocemos dejará de existir en la Tierra.
Este gran rango, sin embargo, no considera ningún otro tipo de catástrofe que pueda llegar a suceder antes de este plazo, que -según científicos- podría inclusive adelantarse gracias al cambio climático.
"Los humanos tendrán problemas sólo con un mínimo aumento en la temperatura, y para el final solamente los microbios en hábitats de nicho serán capaces de soportar el calor", señaló el jefe del estudio de la escuela de Ciencias Ambientales de la Universidad de East Anglia, Andrew Rushby.
Como una posible solución a este nuevo descubrimiento, los expertos han identificado paralelamente ocho planetas que podrían llegar a albergar vida una vez que nuestro planeta será inhabitable, incluyendo nuestro vecino Marte, y el tiempo de vida que podrían tener con respecto a su propio Sol.
Dentro de los posibles futuros "hogares" de la humanidad se consideran, por ejemplo, los planetas Kepler 22b y Gliese 581d, con un largo de periodo de vida y el prospecto de poder albergar eventualmente agua líquida en sus respectivos sistemas, y por tanto, también la vida humana.


Aquí dejo un vídeo explicativo sobre ello, también un par de fotos



 




Formación de montañas actuales


Las montañas se forman a través de un proceso general llamado "deformación" de la corteza de la Tierra. La palabra deformación es una palabra que también significa "doblar". Un ejemplo de este tipo de doblez proviene del proceso que describiremos a continuación.Cuando dos secciones de la litósfera chocan, que no están bajo subducción, hace que las lajas de la litósfera sean forzadas hacia abajo, hacia regiones más profundas de la Tierra; las lajas de apilan unas contras otras, causando que una o ambas lajas se doblen como un acordión. Este proceso hace que la corteza se eleve, doble y deforme grandemente y de origen a las cordilleras de montañas. Generalmente, la formación de las montañas y el manto de subducción van juntas.Este proceso se ilustra en la figura a la izquierda. La placa de la litósfera que aparece a la derecha se haya bajo subducción, mientras que la fuerza de colisión gradualmente hace que la placa a la izquierda se doble completamente. Conjuntamente a esto, el derretimiento de las lajas bajo subducción conlleva a la formación de volcanes.



Aquí dejo un par de vídeos para que lo veáis bien:


Y ahora un par de imágenes


Nivel del mar a lo largo de la historia de la Tierra



Dilatación térmica: Cuando el agua se calienta, se dilata. Alrededor de la mitad del aumento del nivel del mar que se produjo a lo largo del siglo pasado es atribuible al hecho de que los océanos, al calentarse, ocupan más espacio.

El deshielo de los glaciares y de los casquetes polares: Las grandes formaciones de hielo, como los glaciares y los casquetes polares, se derriten de forma natural en verano. Pero en invierno, las precipitaciones en forma nieve, compuestas en su mayor parte de agua marina evaporada, bastan normalmente para compensar el deshielo. Sin embargo, las altas y persistentes temperaturas registradas recientemente a causa del calentamiento global, son las responsables de que la cantidad de hielo que se derrite en verano haya aumentado y de que las nevadas hayan disminuido debido a que los inviernos se retrasan y las primaveras se adelantan. Este desequilibrio genera un aumento neto significativo de la escorrentía frente a la evaporación de los océanos, provocando que el nivel del mar se eleve.


Pérdida de hielo en Groenlandia y en la Antártida Occidental:Al igual que con los glaciares y con los casquetes de hielo, el aumento del calor está provocando que las enormes placas de hielo que recubren Groenlandia y la Antártida se derritan a un ritmo acelerado. Asimismo, los científicos creen que el agua dulce generada por la fusión en la superficie y el agua de mar bajo su superficie se están filtrando por debajo de las placas de hielo de Groenlandia y de la Antártida Occidental, lubricando las corrientes de hielo y provocando que estas se deslicen con mayor rapidez hacia el mar. Además, el aumento de las temperaturas está provocando que las enormes plataformas de hielo adheridas a la Antártida se estén derritiendo desde la base, se debiliten y se desprendan.

Consecuencias

Cuando el nivel del mar se eleva con rapidez, tal y como ha estado haciéndolo en los últimos tiempos, incluso un pequeño aumento puede tener consecuencias devastadoras en los hábitats costeros. El agua de mar penetra en zonas cada vez más alejadas de la costa, lo cual puede generar consecuencias catastróficas como la erosión, la inundación de humedales, la contaminación de acuíferos y de suelo agrícola, y la pérdida del hábitat de peces, pájaros y plantas.

Cuando las tormentas de gran intensidad tocan tierra, un nivel del mar más elevado provoca temporales de mayor tamaño e intensidad que pueden destruir todo lo que encuentran a su paso.

Además, cientos de millones de personas viven en zonas que cada vez serán más vulnerables al riesgo de inundaciones. La subida del nivel del mar les obligaría a abandonar sus hogares y a mudarse a otra zona. Las islas de poca altitud quedarían completamente sumergidas.


No queremos hablar de las mareas que es tema extenso para muchos otros artículos. El controvertido tema relacionado con el cambio climático nos hace reflexionar sobre el hecho demostrado de la variación del nivel del mar en la historia. Hace 20.000 años, al final del último periodo glacial, el nivel de los mares estaba a 120 metros por debajo del actual! Cojan una carta con batimetrías y miren,… miren como cambiaría la península ibérica. Entonces empezaron a fundirse lo glaciares y el nivel del mar creció al ritmo de 1 centímetro cada año hasta alcanzar su nivel actual, sobre el 6.000 antes de Cristo.Sin embargo en el último siglo ha vuelto a aumentar a razón de unos 20 centímetros producto del calentamiento desencadenado por las actividades del hombre. Aunque paráramos en seco la producción de gases de efecto invernadero y destrucción del medio ambiente, el cambio está lanzado y no se detendría hasta pasados muchos años ya que el océano reacciona muy lentamente y con mucha inercia a los cambios del clima debido a su enorme inercia térmica.

Ya hay nieves ‘perpetuas’ que han desaparecido totalmente, como las del Kilimanjaro, y glaciares en los Alpes que ya no lo son más. Hasta 60 metros subirán más los mares si conseguimos acabar por fundir los polos y los hielos almacenados en la Antártica.¡El Polo Norte YA es navegable en algunas épocas del año! Desconocemos los devastadores efectos colaterales que estos inmensos cambios van a originar en el equilibrio natural y biológico de la tierra. 


El modelo social actual, sus dirigentes y políticos que no atienden más que a intereses económicos basados en principios decimonónicos totalmente superados, y no saben entender aquellas sabias palabras de las tribus indias según las cuales


 “la tierra no es un regalo de nuestros padres; es un préstamo de nuestros hijos”.



 Aquí dejo un vídeo explicativo de un par de minutos y unas pocas imágenes de cómo seria esa catástrofe a lo largo del tiempo






Extinciones en el planeta

Extinciones que ha habido en la Tierra.

A lo largo de la historia terrestre, la biodiversidad ha sufrido grandes extinciones masivas que han llegado a extinguir hasta el 95% de las especies existentes.


Primera gran extinción

Conocida también como "La extinción masiva del Cámbrico-Ordovícico", tuvo lugar a principios de la era Paleozoica. En aquella época la vida se concentraba enteramente en el mar, lo que explica que los seres marinos fueran los únicos afectados por dicha extinción de causa imprecisa.
Existen pruebas que afirman que esta extinción estuvo dividida en cuatro partes. La primera causó la desaparición de los trilobitas más antiguos y los arqueociátidos. El resto de las extinciones afectaron a los demás trilobitas, a los braquiópodos y a los conodontes.
Actualmente los científicos creen que el causante del exterminio del 95% de las especies marinas puede ser un período glacial o la reducción de la cantidad de oxígeno disponible.

Segunda gran extinción

Hace aproximadamente 444 millones de años dos extinciones masivas marcaron la transición entre los períodos Ordovícicos y Silúrico que, si se cuentan juntas, fueron la segunda extinción masiva más trágica en la historia de la Tierra.
El primer evento ocurrió tras el cambio drástico de los hábitats marinos al descender el nivel del mar; el segundo, entre quinientos mil y un millón de años más tarde por lo contrario, el crecimiento del nivel de mar rápidamente.
 Los grandes afectados fueron los seres marinos al ser los únicos pobladores del planeta. Desaparecieron el 50% de los corales y cerca de 100 familias biológicas, lo que representaba el 85% de las especies de fauna. Se extinguieron principalmente los braquiópodos y los briozonos, junto con las familias de trilobitas, conodintes y graptolites.
La teoría más aceptada explica que la primera parte de la extinción fue causada al inicio de una larga edad de hielo que provocó la formación de grandes glaciares en el supercontinente Gondwana y, por consecuente, la bajada del nivel del mar. La segunda, en cambio, surgió tras la finalización de la edad de hielo, el hundimiento de los glaciares y el posterior aumento del nivel del mar.

Tercera gran extinción

El paso de período entre el Silúrico y el Devónico viene marcado por esta extinción masiva que tuvo mayor influencia en mares que en continentes, y en latitudes tropicales que en medias.
Los corales, dominantes de este período, desaparecieron al igual que algunos grupos planctónicos como los graptolites y los tentaculites. Muchos taxones marinos redujeron su gran diversidad a semejanza del tipo de pez, dipnoos.
Los acritarcos, ostrácodos, ammonoideos y algunas clases de peces (los placodermos y los estracodermos) desaparecieron. Se extinguieron el 85% de géneros de braquiópodos y ammonoideos, además de numerosos tipos de gasterópodos y trilobites. En los medios terrestres, las plantas vasculares no se ven afectadas por esta pérdida general.
En conjunto se estima que desaparecieron el 77% de las especies, el 57% de los géneros y el 22% de las familias.
Las causas no terminan de esclarecerse, aunque se sospecha del enfriamiento global no se excluye la posibilidad de un impacto extraterrestre.

Cuarta gran extinción

Ocurrida aproximadamente hace 251 millones de años, define el límite entre la era Primaria y la Secundaria, entre los períodos Pérmico y Triásico. Es conocida como "La Gran Mortandad", por ser la más dramática de las extinciones ocurridas en la Tierra.
Perecieron el 90% de todas las especies; el 96% de las especies marinas y el 70% de las terrestres, entre ellos, el 98% de los crinoideos, el 78% de los braquiópodos, el 76% de los briosos, el 71% de los cefalópodos, 21 familia de reptiles y 6 de anfibios, además de un gran números de insectos, árboles y microbios. Los conocidos trilobites desaparecieron para siempre con esta extinción en masa.
Tras la catástrofe sólo sobreviviría un 10% de las especies presentes a finales del pérmico.

Quinta gran extinción

Corresponde con la extinción masiva del Triásico-Jurásico, la tercera más catastrófica. Afectó de manera importante la vida en la superficie y en los océanos de la Tierra, desapareciendo cerca del 20% de las familias biológicas marinas (aunque la mayoría de estos grupos se recuperan en el Jurásico) lo que equivale a aproximadamente el 75% de los invertebrados marinos.
Esta etapa acabó con la mayoría de los terápsidos, los conodontos, los rincosaurios y los arqueosauros, los reptiles placodontos y mamiferoides, grandes anfibios… Los únicos reptiles marinos que sobrevivieron fueron los ictiosauros y plesiosauros.
La liberación de tan grande número de nichos ecológicos dejó el escenario preparado a los dinosaurios, que empezaban su dominio en la Tierra hasta el apartado siguiente…
Se han propuesto diversas explicaciones para este evento, pero en todas ellas quedan cabos sueltos. Ni los cambios climáticos graduales ni los cambios en el nivel del mar ni el posible impacto de un asteroide ni la posibilidad de erupciones volcánicas masivas explican este suceso ocurrido.

Sexta gran extinción

Se desconoce la duración de este evento pero se puede cuadrar a finales del período Cretácico. La desaparición de los grandes reptiles en esta extinción en masa dio paso al Cenozoico.
Este exterminio causó la desaparición de aproximadamente el 50% de los géneros biológicos, entre ellos se encuentran: los dinosaurios, pterosaurios, reptiles nadadores, plesiosauros y mosasaurios, ammonoideas, rudistas e inocerámidos. El nannoplancton calcáreo y los foraminíferos planctónicos experimentaron pérdidas importantes aunque se recuperaron durante la Era Cenozoica. Los grandes supervivientes fueron la mayor parte de las plantas, de los animales terrestres (tales como los insectos, caracoles, ranas, salamandras, tortugas, lagartos, serpientes, cocodrilos y mamíferos placentarios), de los invertebrados marinos (estrellas de mar, echinoidea, moluscos y artrópodos) y de los peces.
Existen diferentes teorías al igual que en los otros acontecimientos pero la más aceptada es, probablemente, la posibilidad del impacto de un meteorito de gigantescas dimensiones que, debido a la gran explosión generada en su impacto, levantaría grandes cantidades de polvo al aire impidiendo que la luz solar llegara hasta las plantas, reduciéndolas en cantidad, generando con ello un desequilibrio en las cadenas tróficas.

¿Séptima gran extinción?

Sí. De hecho, algunos científicos afirman que al comenzar el período del Holoceno (hace 10000 años) comenzó una séptima extinción masiva de la llamada Megafauna que se extiende hasta nuestros días debido a la actividad humana.
El término Megafauna proviene del griego mega, "grande", y se utiliza en paleontología para denominar a los grandes animales terrestres que poblaron la Tierra tras la extinción de los dinosaurios.
Dentro de los animales comprendidos en la Megafauna fueron muchos los extintos. Una de las causas podrían ser cambios climáticos a escala global aunque la explicación más plausible de estas perdidas es la actuación humana. Esta se hace presente de diferentes maneras en la vida de los otros pobladores del planeta: destrucción y fragmentación de su hábitat; introducción de enfermedades, parásitos y depredadores para los que la flora y fauna nativas carecen de defensas; contaminación del aire, agua y suelo; sobreexplotación de especies; uso de productos químicos tóxicos en el control de plagas; deforestación de los bosques (se calcula que se pierden 20.000 kilómetros cuadrados al año de zona forestal); cacería furtiva y tráfico ilegal de especies.
Otra causa que actualmente no se tiene en cuenta pero que va a representar un problema en el futuro es la falta de energía disponible ya que presentemente la especie humana está censada en seis mil millones y se consume el 40% de la actividad primaria neta del planeta. En 2050 se estima que seremos diez mil millones por lo que se supone que esta última cifra aumentará en buen grado.
Como se ha dicho anteriormente, fueron muchas las especies desaparecidas pero en este trabajo vamos a centrarnos de manera resumida en tres: las moas de Nueva Zelanda, el tigre de Tasmania y el delfín de Río Chino.
Los dinornítidos o moas (Dinornithidae) eran una familia de aves no voladoras gigantes de Nueva Zelanda. Se conocen diez especies de diferentes tamaños (la más pequeña, del tamaño de un gallo; la de mayor tamaño, medía cerca de 3m de altura y pesaba 250kg). Las moas se extinguieron alrededor del año 1500 a causa de la llegada de los primeros cazadores maoríes a las islas.
El tigre de Tasmania (Thylacinus cynocephalus), también conocido como lobo de Tasmania, talacino, lobo marsupial o tigre de Tasmania, era un carnívoro marsupial nativo de Australia. Ante la necesidad de alimento atacaba a los rebaños de ovejas por lo que los pastores y el propio gobierno colonial los consideraron alimañas necesarias de exterminio. Lo lograron antes de la primera mitad del siglo XX.
El delfín de Río Chino (Lipotes vexillifer) es una de las especies extintas más recientes. Esta variedad de delfines emigró desde el Océano Pacifico al río Yangtze hace unos 20 millones de años. En épocas de la dinastía Han "Erya" había unos 5000 especímenes en el río. En 1979 China lo declaró en peligro, y en 1983 se decreto que su caza era ilegal. Para 1986 la población total se estimaba es unos 300 individuos, y en 1990 unos 200. Su número siguió decreciendo rápidamente, sobre todo con la construcción de la Represa de las tres Gargantas, que alteró de manera irrecuperable el hábitat de este delfín. En 1998 solo se pudieron encontrar 7 ejemplares y los científicos especularon para poder salvarlos pero una expedición que recorrió el río de extremo a extremo en 2006 no pudo hallar ni uno de estos delfines, por lo que se los considera oficialmente extintos.
La Fundación de Conservación de Wuhan "Delfín Baiji", fundada en diciembre de 1996 gastó alrededor de unos 100.000$ para la preservación de células in Vitro, por lo que quizás algún día lo podamos ver nuevamente


Aquí dejo un vídeo para que podáis ver como fue:





Aparición de vida terrestre

Aparición de vida en la Tierra

En una tierra roja y árida, caliente. Con géiseres escupiendo a un cielo oscuro y plomizo en las zonas más frías. En las más calientes solo existe la lava. No hay nada que se parezca a una planta. Ni tan siquiera musgo o verdín. Por supuesto que no, porque la vida todavía no existe. Solo hay cosas. Minerales, moléculas, materia inerte... En una charca cercana, junto a una roca parda, algo se mueve en su interior. Pero no podemos verlo porque son moléculas, tan pequeñas que son indistinguibles del líquido donde están. De pronto, el calor, el movimiento, otras moléculas o la mezcla de todo esto, junto con un poco de suerte, marcan el inicio de algo completamente nuevo: el primer germen del origen de la vida está creciendo.

5 Hipótesis sobre el origen de la vida en la Tierra


Todas las evidencias con las que contamos sitúan el origen de la vida alrededor de unos 4.000 millones de años atrás. Sin embargo, no nos queda tan claro cómo o dónde apareció. Si ya nos cuesta seguir nuestra propia historia hasta la raíz, ¿podéis imaginar la tarea tan enorme que supone el enfrentarse a algo como desentrañar el secreto que nos hizo? Pero...¿qué es el origen de la vida?
origen de la vida
El primer periodo de la tierra, probablemente, fue muy parecido a esto.
Llamamos así al momento donde las moléculas comunes del universo (y de nuestro planeta) se unieron para formar los primeros compuestos precursores de la vida: moléculas especiales parecidas a las complejas sustancias que hoy nos forman; capaces de dar el primer paso en las características de la vida: reproducción y evolución. En concreto, hablamos de un sistema rudimentario parecido a nuestros actuales ADN (y ARN), el sistema de transmitir información; nuestros aminoácidos, los pequeños ladrillos con los que construimos la vida; y a nuestras membranas celulares, que define la situación exacta de la célula y son precursores de otros orgánulos. 

1.La teoría hidrotermal
Ésta explica cómo el origen de la vida habría tenido lugar en el agua caliente y llena de moléculas. Gracias al aporte energético producido por el calor terrestre o por un evento externo (como un rayo), las moléculas se ensamblarían de forma natural en nuevas moléculas más complejas. Parte de esta hipótesis está demostrada en laboratorio, donde se ha observado cómo las moléculas, efectivamente, tienen tendencia a formar estructuras más compleja de forma "espontánea". Esto debió ocurrir en profundidad, pues la luz ultravioleta debido a la falta de atmósfera habría destruido los compuestos más grandes.

2.La gran glaciación
Una glaciación global pudo ocurrir hace unos 3.700 millones de años. Entonces, el hielo podría haber protegido una serie de compuestos que evolucionarían lentamente bajo una capa enorme. Más adelante, con la adquisición de una atmósfera por parte de la Tierra, los rayos UV no penetrarían tanto, el planeta se calentaría debido a un aumento del brillo del sol y los ciclos que están surgiendo y los compuestos saldrían al aire libre.
gases invernadero




3.La Panspermia

La llegada de la vida desde el exterior es una de las teorías más populares. Aunque de las menos sostenibles hasta el momento. En ella se explica que los precursores de la vida no estaban aquí, en la Tierra, sino que llegaron de otro lugar: un asteroide u otro planeta, como pudiera ser Marte. Hasta ahora ningún dato avala concretamente esta hipótesis, aunque sí hemos detectado moléculas precursoras de precursoras. Aunque esto no es nada especialmente asombroso.

4.La hipótesis de los simples

Esta hipótesis explica, de forma similar a la teoría hidrotermal cómo los precursores provinieron de ciclos moleculares de reacción sencillos que fueron siendo cada vez más complejos. Sin embargo, al contrario que la anterior, esta necesita de una especie de membrana o cápsula primitiva para poder evolucionar en el sentido adecuado. Esto representa su principal inconveniente.

5.La hipótesis del ARN
La hipótesis del ARN resulta bastante lógica pero a la vez, imposible en sus primeros estadios. El ARN es precursor del ADN en nuestra biología. También es un mensajero, codificador y relativamente estable pero dinámico. Algunos virus y bacterias solo contienen ARN. Todo esto nos hace suponer que el ARN fue antes que el ADN. Sin embargo, esto solo vemos posible que se sitúe mucho después del origen molecular de la vida. Es muy difícil que el ARNExisten muchos indicios para suponer que el ARN fue antes que el ADN preceda a las membranas rudimentarias moleculares ya que es bastante inestable en el medio (entre otras cosas).
Sin embargo, una reciente hipótesis cree haber encontrado algunas novedades al respecto. Según un estudio, en un primer momento surgió el ARN de forma natural y espontánea (cosa que también se ha comprobado como posible bajo ciertas circunstancias). Esa cadena con información, por supuesto, no fue suficiente. Entonces, en ese caldo de cultivo, el ARN encontraría lo necesario para formar un aminoácido primordial. Es decir, la manera de transmitir información y los ladrillos esenciales fueron antes que las membranas. Para ello necesitarían un "ayudante" molecular desconocido. Más adelante surgirían las membranas y todo lo que conlleva. No obstante, sigue siendo una hipótesis bastante complicada de asumir.

Lo que vino después

En un momento dado, millones de años atrás, tendríamos unas moléculas muy primitivas capaces de formar membranas de forma natural. Lo hacen así porque su estructura química se lo pide, pues tal es su naturaleza. Por otro lado, otras moléculas serían capaces de transformar a otras, de nuevo, gracias a sus propiedades. Lo que transforman son pequeñas piezas capaces de unirse en largas cadenas, las cuales adoptan formas y propiedades distintas según se unen. Ya tenemos las tres piezas esenciales: ya ha surgido la vida. Con el tiempo, tras mucho ensayo y error, fruto de la casualidad o de la naturaleza de las moléculas, se unieron. Así que de pronto, no sabemos muy bien cuando, aparece LUCA. LUCA, por sus siglas en inglés, es el hipotético ancestro común de todos los seres vivos. Es la primera prueba ordenada del origen de la vida. Y, por supuesto, es solo una hipótesis pues no sabemos si en realidad hay varios "LUCA" o solo uno.
origen de la vida

Pero imaginemos que solo surgió un LUCA, un ancestro común. Muy básico. De nuevo, tras ensayo y error, de forma natural y bajo condiciones extremas: calor, presión, ataques de otros químicos presentes en el medio, LUCA se convirtió en algo parecido a una célula capaz de reproducirse. De crear nuevas moléculas y adquirir nuevas propiedades. LUCA comenzó a dar pasos en el camino de la evolución. Cuando tienes millones de años y nada más que hacer, lo único que te queda es evolucionar. Pero esto, como podréis imaginar, no es el final, sino el comienzo de una historia enorme, difícil de entender o tan siquiera de abarcar.
Los primeros organismos unicelulares (de una sola célula) más sencillos aparecerían con el tiempo; seres parecidos pero muchísimos más complejos que LUCA. Después, otros organismos aún más complejos y grandes, pero todavía unicelulares, seguirían evolucionando. No fue hasta muchísimo después que comenzaron a aparecer las primeras asociaciones de células, viviendo en colonias. Más tarde esas colonias se especializarían, dedicándose cada célula a una función. Y aquí llegamos a la primera letra del primer párrafo del prólogo de la vida. Y para que nos hagamos una idea, esa única letra ocupa el 70% del libro que tenemos sobre el tiempo y la historia. Así que como esto se puede hacer un poco largo, me temo, tendremos que continuar otro día.
Aquí hay un vídeo explicativo sobre la aparición de la vida en la Tierra.






lunes, 30 de noviembre de 2015

Breve Reflexión

Construyendo mi blog he aprendido a que es muy divertido crear algo tuyo desde la nada es decir he creado un blog en el cual hablo sobre mi trabajo y además es divertido hacerlo, me picaba con mis amigos y todo por que estuviera bien hecho dado que puedes hacerlo como quieras.

Mi blog lo he echo a duras penas por la falta de ordenador en mi casa pero aún así he sabido realizarlo a mi gusto la verdad que me gusta mucho mi blog.

Todo lo que he aprendido lo puedo usar para conocer el mismísimo suelo que piso todos los días con mis pies, y para matar el "gusanillo" de la curiosidad.

Lo único que cambiaría del blog sería... nada por que la verdad es que me encanta.

Historia de la Tierra

La Historia de la Tierra

El origen de la Tierra es el mismo que el del sistema solar. Lo que terminaría siendo el sistema solar inicialmente existió como una extensa mezcla de nubes de gas,rocas y polvo en rotación. Estaba compuesta por hidrógeno y helio surgidos en el Big Bang, así como por elementos más pesados producidos por supernovas. Hace unos 4600 millones de años, una estrella cercana se transformó en supernova y su explosión envió una onda de choque hasta la nebulosa protosolar incrementando su momento angular. A medida que la nebulosa empezó a incrementar su rotación,gravedad e inercia, se aplanó conformando un disco protoplanetario (orientado perpendicularmente al eje de rotación). La mayor parte de la masa se acumuló en su centro y empezó a calentarse, pero debido a las pequeñas perturbaciones del momento angular y a las colisiones de los numerosos escombros generados, empezaron a formarse protoplanetas. Aumentó su velocidad de giro y gravedad, originándose una enorme energía cinética en el centro. La imposibilidad de transmitir esta energía a cualquier otro proceso hizo que el centro del disco aumentara su temperatura. Por último, comenzó la fusión nuclear, de hidrógeno a helio, y al final, después de su contracción, se transformó en una estrella: el Sol. La gravedad producida por la condensación de la materia –que previamente había sido capturada por la gravedad del propio Sol– hizo que las partículas de polvo y el resto del disco protoplanetario empezaran a segmentarse en anillos. Los fragmentos más grandes colisionaron con otros, conformando otros de mayor tamaño que al final formarían los protoplanetas. Dentro de este grupo había uno situado aproximadamente a 150 millones de kilómetros del centro: la Tierra. El viento solar de la recién formada estrella arrastró la mayoría de las partículas que tenía el disco, condensándolas en cuerpos mayores.


Este es un vídeo explicativo sobre la formación de la Tierra.



Imágenes.